Mar 3, 2006

Bird Flu

Bird Flu – the next pandemic ?

In February 2004, an outbreak of highly pathogenic avian influenza (HPAI) A (H5N2) was detected and reported in a flock of 7,000 chickens in south-central Texas . This was the first outbreak of HPAI in the United States in 20 years.

Last month(February 2006) it has “infected” Asia and Europe.Let us clear our doubts about birdflu.

What is bird flu ?

Avian influenza or bird flu is an infection caused by avian (bird) influenza (flu) viruses. These influenza viruses occur naturally among birds. Wild birds worldwide carry the viruses in their intestines, but usually do not get sick from them. However, avian influenza is very contagious among birds and can make some domesticated birds, including chickens, ducks, and turkeys, very sick and kill them.
Infected birds shed influenza virus in their saliva, nasal secretions, and feces. Susceptible birds become infected when they have contact with contaminated secretions or excretions or with surfaces that are contaminated with secretions or excretions from infected birds. Domesticated birds may become infected with avian influenza virus through direct contact with infected waterfowl or other infected poultry, or through contact with surfaces (such as dirt or cages) or materials (such as water or feed) that have been contaminated with the virus

What is the cause of Bird flu ?

Influenza A (H5N1) virus – also called “H5N1 virus” – is an influenza A virus subtype that occurs mainly in birds, is highly contagious among birds, and can be deadly to them. H5N1 virus does not usually infect people, but infections with these viruses have occurred in humans. Most of these cases have resulted from people having direct or close contact with H5N1-infected poultry or H5N1-contaminated surfaces.

How ?

The disease, which was first identified in Italy more than 100 years ago, occurs worldwide.
All birds are thought to be susceptible to infection with avian influenza, though some species are more resistant to infection than others. Infection causes a wide spectrum of symptoms in birds, ranging from mild illness to a highly contagious and rapidly fatal disease resulting in severe epidemics. The latter is known as “highly pathogenic avian influenza”. This form is characterized by sudden onset, severe illness, and rapid death, with a mortality that can approach 100%.
Fifteen subtypes of influenza virus are known to infect birds, thus providing an extensive reservoir of influenza viruses potentially circulating in bird populations. To date, all outbreaks of the highly pathogenic form have been caused by influenza A viruses of subtypes H5 and H7.
Migratory waterfowl – most notably wild ducks – are the natural reservoir of avian influenza viruses, and these birds are also the most resistant to infection. Domestic poultry, including chickens and turkeys, are particularly susceptible to epidemics of rapidly fatal influenza.
Direct or indirect contact of domestic flocks with wild migratory waterfowl has been implicated as a frequent cause of epidemics. Live bird markets have also played an important role in the spread of epidemics.
Recent research has shown that viruses of low pathogenicity can, after circulation for sometimes short periods in a poultry population, mutate into highly pathogenic viruses. During a 1983–1984 epidemic in the United States of America, the H5N2 virus initially caused low mortality, but within six months became highly pathogenic, with a mortality approaching 90%. Control of the outbreak required destruction of more than 17 million birds at a cost of nearly US$ 65 million. During a 1999–2001 epidemic in Italy, the H7N1 virus, initially of low pathogenicity, mutated within 9 months to a highly pathogenic form. More than 13 million birds died or were destroyed.
H5N1

Of the 15 avian influenza virus subtypes, H5N1 is of particular concern for several reasons. H5N1 mutates rapidly and has a documented propensity to acquire genes from viruses infecting other animal species. Its ability to cause severe disease in humans has now been documented on two occasions. In addition, laboratory studies have demonstrated that isolates from this virus have a high pathogenicity and can cause severe disease in humans. Birds that survive infection excrete virus for at least 10 days, orally and in faeces, thus facilitating further spread at live poultry markets and by migratory birds.
The epidemic of highly pathogenic avian influenza caused by H5N1, which began in mid-December 2003 in the Republic of Korea and is now being seen in other Asian countries, is therefore of particular public health concern. H5N1 variants demonstrated a capacity to directly infect humans in 1997, and have done so again in Viet Nam in January 2004. The spread of infection in birds increases the opportunities for direct infection of humans. If more humans become infected over time, the likelihood also increases that humans, if concurrently infected with human and avian influenza strains, could serve as the “mixing vessel” for the emergence of a novel subtype with sufficient human genes to be easily transmitted from person to person. Such an event would mark the start of an influenza pandemic.

Effects
Symptoms of bird flu in humans have ranged from typical flu-like symptoms (fever, cough, sore throat and muscle aches) to eye infections, pneumonia, severe respiratory diseases (such as acute respiratory distress), and other severe and life-threatening complications. The symptoms of bird flu may depend on which virus caused the infection.

Cure

Published information about the clinical course of human infection with H5N1 avian influenza is limited to studies of cases in the 1997 Hong Kong outbreak. In that outbreak, patients developed symptoms of fever, sore throat, cough and, in several of the fatal cases, severe respiratory distress secondary to viral pneumonia. Previously healthy adults and children, and some with chronic medical conditions, were affected.
Tests for diagnosing all influenza strains of animals and humans are rapid and reliable. Many laboratories in the WHO global influenza network have the necessary high-security facilities and reagents for performing these tests as well as considerable experience. Rapid bedside tests for the diagnosis of human influenza are also available, but do not have the precision of the more extensive laboratory testing that is currently needed to fully understand the most recent cases and determine whether human infection is spreading, either directly from birds or from person to person.
Antiviral drugs, some of which can be used for both treatment and prevention, are clinically effective against influenza A virus strains in otherwise healthy adults and children, but have some limitations. Some of these drugs are also expensive and supplies are limited.
Experience in the production of influenza vaccines is also considerable, particularly as vaccine composition changes each year to match changes in circulating virus due to antigenic drift. However, at least four months would be needed to produce a new vaccine, in significant quantities, capable of conferring protection against a new virus subtype.



Preventions

· Clean Poultrys
· Using AntiInfectants in the cage
· Monitoring of the food that the chickens eat
· If birdflu is reported in locality chickens must be washed properly and boiled at a temperature above 70(centigrade scale).

Future

Based on historical patterns, influenza pandemics can be expected to occur, on average, three to four times each century when new virus subtypes emerge and are readily transmitted from person to person. However, the occurrence of influenza pandemics is unpredictable. In the 20th century, the great influenza pandemic of 1918–1919, which caused an estimated 40 to 50 million deaths worldwide, was followed by pandemics in 1957–1958 and 1968–1969.
Experts agree that another influenza pandemic is inevitable and possibly imminent.
Resources
http://www.birdflu.org.cn/facts.php
http://www.cdc.gov/flu/avian/gen-info/facts.htm
http://www.mymomsbest.com/daily/?p=87